多元逻辑回归模型的应用误区
【摘要】多元逻辑回归模型的应用误区多元逻辑回归模型的理论前提相对判别分析法要宽松得多,且没有关于分布类型、协方差阵等方面的严格假定。不过,
多元逻辑回归模型的应用误区
多元逻辑回归模型的理论前提相对判别分析法要宽松得多,且没有关于分布类型、协方差阵等方面的严格假定。不过,在大量运用多元逻辑回归的研究中往往忽视了另一个相当重要的问题,即模型自变量之间可能存在的多重共线性干扰。与其他多元回归方法一样,Logistic回归模型也对多元共线性敏感。
当变量之间的相关程度提高时,系数估计的标准误将会急剧增加;同时,系数对样本和模型设置都非常敏感,模型设置的微小变化、在同时,系数对样本和模型设置都非常敏感,模型设置的微小变化、在样本总体中加入或删除案例等变动,都会导致系数估计的较大变化。
由于财务比率均由具有相互钩稽关系的财务报表计算得出,同类指标之间的相关程度是非常大的,不加处理地让这些高度相关的变量直接进入模型必然会导致严重的多重共线性干扰。令人遗憾的是,国内外大多数相关研究都没有意识到这一问题,由此得出的判别模型,其稳定性和准确性显然不容乐观。
上一篇:excel表格基本操作之从零开始学习
下一篇:大华大数据技术助力平安城市新常态建设
就业培训申请领取
环球青藤
官方QQ群扫描上方二维码或点击一键加群,免费领取大礼包,加群暗号:青藤。 一键加群
数据分析师相关文章推荐
|数据分析师最新文章推荐
最新文章
数据分析师各地入口
环球青藤官方微信服务平台
刷题看课 APP下载
免费直播 一键购课
代报名等人工服务
数据分析师热点排行
- 1 传统数据和大数据的区别
- 2 数据分析的8种方法都是哪些?
- 3 数据分析的具体流程是什么?
- 4 3大常用的数据分析工具是什么?
- 5 excel中的运算符
- 6 数据分析的作用有哪些?
- 7 电子商务需要分析哪些数据?
- 8 数据分析包括哪些内容?
- 9 数据分析的基本步骤
- 10 rdd是什么?